2.软文推荐
3.软文推荐
目录: 1、消息队列(mq)是什么? 2、Kafka,Mq和Redis作为消息队列使用 3、消息队列概念 4、消息队列核心原理 5、消息队列之zeroMQ、rabbitMQ、kafka 6、大型的PHP应用,通常使用什么应用做消息队列? 消息队列(mq)是什么?是生产者先将消息投递一个叫队列的容器中,然后再从这个容器中取出消息,最后再转发给消费者。
消息队列是 Microsoft 的消息处理技术,它在任何安装 Microsoft Windows 的计算机组合中,为任何应用程序提供消息处理和消息队列功能,无论这些计算机是否在同一个网络上或者是否同时联机。
消息队列网络是能够相互间来回发送消息的任何一组计算机。网络中的不同计算机在确保消息顺利处理的过程中扮演不同的角色。它们中有些提供路由信息以确定如何发送消息,有些保存整个网络的重要信息,而有些只是发送和接收消息。
消息队列的类型介绍:
消息队列目前主要有两种类型:POSIX消息队列以及系统V消息队列,系统V消息队列目前被大量使用。每个消息队列都有一个队列头,用结构struct msg_queue来描述。队列头中包含了该消息队列的大量信息。包括消息队列键值、用户ID、组ID、消息队列中消息数目等等。
消息队列就是一个消息的链表,可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向消息队列中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的。
Kafka,Mq和Redis作为消息队列使用kafka是个日志处理缓冲组件,在大数据信息处理中使用。和传统的消息队列相比较简化了队列结构和功能,以流形式处理存储(持久化)消息(主要是日志)。日志数据量巨大,处理组件一般会处理不过来,所以作为缓冲层的kafka,支持巨大吞吐量。为了防止信息丢失,其消息被调用后不直接丢弃,要多存储一段时间,等过期时间过了才丢弃。这是mq和redis不能具备的。主要特点如下:巨型存储量: 支持TB甚至PB级别数据。高吞吐,高IO:一般配置的服务器能实现单机每秒100K以上消息的传输。消息分区,分布式消费:能保消息顺序传输。 支持离线数据处理和实时数据处理。Scale out:支持在线水平扩展,以支持更大数据处理量
redis只是提供一个高性能的、原子操作内存键值对,具有高速访问能力,可用做消息队列的存储,但是不具备消息队列的任何功能和逻辑,要作为消息队列来实现的话,功能和逻辑要通过上层应用自己实现。
我们以RabbitMQ为例介绍。它是用Erlang语言开发的开源的消息队列,支持多种协议,包括AMQP,XMPP, SMTP, STOMP。适合于企业级的开发。
MQ支持Broker构架,消息发送给客户端时需要在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。
还有ActiveMq,ZeroMq等。功能基本上大同小异。并发吞吐TPS比较,ZeroMq 最好,RabbitMq 次之, ActiveMq 最差。
原文:
消息队列概念消息本质上是一种数据结构(当然,对象也可以看做是一种特殊的消息),它包含消费者与服务双方都能识别的数据,这些数据需要在不同的进程(机器)之间进行传递,并可能会被多个完全不同的客户端消费
队列(Queue) ,是先进先出(FIFO, First-In-First-Out)的线性表,通俗的讲队列就是一群人或者事物按照排好的顺序等待接受服务或者处理
本地队列按照功能可划分为初始化队列,传输队列,目标队列和死信队列。初始化队列用作消息触发功能。传输队列只是暂存待传的消息,条件许可的情况下,通过管道将消息传送到其他的队列管理器。目标队列是消息的目的地,可以长期存放消息。如果消息不能送达目标队列,也不能再路由出去,则被自动放入死信队列保存。
只是一个队列定义,用来指定远端队列管理器的队列。使用了远程队列,程序就不需要知道目标队列的位置。
模型队列定义了一套本地队列的属性结合,一旦打开模型队列,队列管理器会按照这些属性动态地创建出一个本地队列。
MQ全称(Message Queue)又名 消息队列 ,是一种 异步通讯 的 中间件 。可以将它理解成邮局,发送者将消息传递到邮局,然后由邮局帮我们发送给具体的消息接收者(消费者),具体发送过程与时间我们无需关心,它也不会干扰我进行其它事情。
它被广泛的应用与跨平台、跨系统的分布式系统之间,为它们提供高效可靠的异步传输机制
JMS(JAVA Message Service,java消息服务)是java的消息服务 JMS是一套 API,是j2EE标准的一部分。
JMS是由Sun公司早期提出的消息标准,旨在为java应用提供统一的消息操作,包括create、send、receive等
JMS是Java Enterprise Edition的一部分。从使用角度看,JMS和JDBC担任差不多的角色,用户都是根据相应的接口可以和实现了JMS的服务进行通信,进行相关的操作
结构图
说明
使用 队列(Queue) 作为消息通信载体;满足 生产者与消费者模式 ,一条消息只能被一个消费者使用,未被消费的消息在队列中保留直到被消费或超时。比如:我们生产者发送100条消息的话,两个消费者来消费一般情况下两个消费者会按照消息发送的顺序各自消费一半(也就是你一个我一个的消费。)
结构图
说明
发布订阅模型(Pub/Sub) 使用 主题(Topic) 作为消息通信载体,类似于 广播模式 ;发布者发布一条消息,该消息通过主题传递给所有的订阅者, 在一条消息广播之后才订阅的用户则是收不到该条消息的 。
AMQP(advanced message queuing protocol) 是一个提供统一消息服务的应用层标准协议,基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,可以跨语法开发
AMQP是一种协议,更准确的说是一种binary wire-level protocol(链接协议),兼容JMS
消息队列核心原理消息队列已经逐渐成为分布式应用场景、内部通信、以及秒杀等高并发业务场景的核心手段,它具有低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。
无论是 RabbitMQ、RocketMQ、ActiveMQ、Kafka还是其它等,都有的一些基本原理、术语、机制等,总结分享出来,希望大家在使用消息队列技术的时候能够快速理解。
1.消息生产者Producer:发送消息到消息队列。
2.消息消费者Consumer:从消息队列接收消息。
3.Broker:概念来自与Apache ActiveMQ,指MQ的服务端,帮你把消息从发送端传送到接收端。
4.消息队列Queue:一个先进先出的消息存储区域。消息按照顺序发送接收,一旦消息被消费处理,该消息将从队列中删除。
1)消息的转储:在更合适的时间点投递,或者通过一系列手段辅助消息最终能送达消费机。
2)规范一种范式和通用的模式,以满足解耦、最终一致性、错峰等需求。
3)其实简单理解就是一个消息转发器,把一次RPC做成两次RPC。发送者把消息投递到broker,broker再将消息转发一手到接收端。
总结起来就是两次RPC加一次转储,如果要做消费确认,则是三次RPC。
点对点模型 用于 消息生产者 和 消息消费者 之间 点到点 的通信。
点对点模式包含三个角色:
发布订阅模型包含三个角色:
生产者发送一条消息到队列queue,只有一个消费者能收到。
发布者发送到topic的消息,只有订阅了topic的订阅者才会收到消息。
基于Queue消息模型,利用FIFO先进先出的特性,可以保证消息的顺序性。
即消息的Ackownledge确认机制,为了保证消息不丢失,消息队列提供了消息Acknowledge机制,即ACK机制,当Consumer确认消息已经被消费处理,发送一个ACK给消息队列,此时消息队列便可以删除这个消息了。如果Consumer宕机/关闭,没有发送ACK,消息队列将认为这个消息没有被处理,会将这个消息重新发送给其他的Consumer重新消费处理。
主要是用“记录”和“补偿”的方式。
1.本地事务维护业务变化和通知消息,一起落地,然后RPC到达broker,在broker成功落地后,RPC返回成功,本地消息可以删除。否则本地消息一直靠定时任务轮询不断重发,这样就保证了消息可靠落地broker。
2.broker往consumer发送消息的过程类似,一直发送消息,直到consumer发送消费成功确认。
3.我们先不理会重复消息的问题,通过两次消息落地加补偿,下游是一定可以收到消息的。然后依赖状态机版本号等方式做判重,更新自己的业务,就实现了最终一致性。
4.如果出现消费方处理过慢消费不过来,要允许消费方主动ack error,并可以与broker约定下次投递的时间。
5.对于broker投递到consumer的消息,由于不确定丢失是在业务处理过程中还是消息发送丢失的情况下,有必要记录下投递的IP地址。决定重发之前询问这个IP,消息处理成功了吗?如果询问无果,再重发。
6.事务:本地事务,本地落地,补偿发送。本地事务做的,是业务落地和消息落地的事务,而不是业务落地和RPC成功的事务。消息只要成功落地,很大程度上就没有丢失的风险。
消息的收发处理支持事务,例如:在任务中心场景中,一次处理可能涉及多个消息的接收、处理,这应该处于同一个事务范围内,如果一个消息处理失败,事务回滚,消息重新回到队列中。
消息的持久化,对于一些关键的核心业务来说是非常重要的,启用消息持久化后,消息队列宕机重启后,消息可以从持久化存储恢复,消息不丢失,可以继续消费处理。
在实际生产环境中,使用单个实例的消息队列服务,如果遇到宕机、重启等系统问题,消息队列就无法提供服务了,因此很多场景下,我们希望消息队列有高可用性支持,例如RabbitMQ的镜像集群模式的高可用性方案,ActiveMQ也有基于LevelDB+ZooKeeper的高可用性方案,以及Kafka的Replication机制等。
消息队列之zeroMQ、rabbitMQ、kafka首先消息是网络通讯的载体,队列可以理解是一种先进先出的数据结构,消息队列是存放消息的容器,是分布式系统中的重要组件。消息队列的优势在于:解耦、异步、削峰,把相关性不
强的模块独立分开视为解耦,异步就是非必要逻辑异步方式处理,加快响应速度,削峰是避免短期高并发导致系统问题进行缓冲队列处理。消息队列的缺点在于:加强系统复杂性、系统可用性降低,使
用了消息队列系统出现问题排查的范围就变大、需要考虑消息队列导致的问题。
本文说明主流的消息队列,针对使用过的zeroMQ和rabbitMQ、Kakfa:
zeroMQ :C语言开发,号称最快的消息队列,本着命名zero的含义,中油中间架构使用简单,表面上是基于socket的封装套接字API,在多个节点应用场景下非常灵活、架构的可扩展性很强,
实现N到M的协同处理;
zmq的socket模式: req、rep、push、pull、pub、sub、router、dealer。
(1)req和rep:请求回应模型,req和rep都可以请求和回答,不同的只是req是先send再rec,rep是先rec再send。支持N个请求端一个接收端,也支持N个接收端一个请求端。N个接收端采
用rr负载均衡。 哪个是“一”端,哪个就bind端口,“N”端就只能connect,所以,req+rep无论谁bind端口,肯定要有一个是“一”。
(2) router和dealer:随时可以发送和接收的req和rep,看起来router+dealer跟 req+rep属于同类功能。因为router和dealer可以随时发送接收,所以它们可以用来做路由。一个router用来响
应N个req,然后它在响应处理的时候,再通过另一个socket把请求扔出去,接收者是另外的M个rep,这就做到N:M。
(3)pub和sub :订阅和推送,对应发布者和订阅者。
(4)push和pull:就是管道,一个只推数据,一个只拉数据。
rabbitMQ :使用erlang语言开发,高并发特点,基于AMQP(即Advanced Message Queuing Protocol)的开源高级消费队列,AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/
订阅)、可靠性、安全),企业级适应性和稳定性,并且有WEB管理界面方便用户查看和管理。以下是rabbitMQ的结构图:
(1)Producer:数据发送方,一般一个Message有两个部分:payload(有效载荷)和label(标签),payload是数据实际载体,label是exchange的名字或者一个tag,决定发给哪个Consumer;
(2)Exchange: 内部 消息交换器,exchange从生产者那收到消息后,一般会指定一个Routing Key,来指定这个消息的路由规则,当然Routing Key需要与Exchange Type及Binding key联合使用
才能最终生效,根据路由规则,匹配查询表中的routing key,分发消息到queue中;
(3)binding:即绑定,绑定(Binding)Exchange与Queue的同时,一般会指定一个Binding key,但不一定会生效,依赖于Exchange Type;
(4)Queue:即队列是rabbitmq内部对象,用于存储消息,一个message可以被同时拷贝到多个queue中,queue对load balance的处理是完美的。对于多个Consumer来说,RabbitMQ 使用循
环的方式(round-robin)的方式均衡的发送给不同的Consumer;
(5)Connection与Channel: Connection 就是一个TCP的连接,Producer和Consumer都是通过TCP连接到RabbitMQ Server, Channel 是为了节省开销建立在上述的TCP连接中的接口,大部
分的业务操作是在Channel这个接口中完成的,包括定义Queue、定义Exchange、绑定Queue与Exchange、发布消息等;
(6)Consumer:即数据的接收方,如果有多个消费者同时订阅同一个Queue中的消息,Queue中的消息会被平摊给多个消费者;
(7)Broker: 即RabbitMQ Server,其作用是维护一条从Producer到Consumer的路线,保证数据能够按照指定的方式进行传输;
(8)Virtual host:即虚拟主机,当多个不同的用户使用同一个RabbitMQ server提供的服务时,可以划分出多个vhost,每个用户在自己的vhost创建exchange/queue;
rabbitMQ消息转发中的路由转发是重点,生产者Producer在发送消息时,都需要指定一个RoutingKey和Exchange,Exchange收到消息后可以看到消息中指定的RoutingKey,再根据当前
Exchange的ExchangeType,按一定的规则将消息转发到相应的queue中去。三种Exchage type:
(1)Direct exchange :直接转发路由,原理是通过消息中的routing key,与binding 中的binding-key 进行比对,若二者匹配,则将消息发送到这个消息队列;
比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange比对消息的routing key和binding key后,将消息发给了queue1,消息消费者1获得queue1的消息;
(2)Topic exchange: 通配路由,是direct exchange的通配符模式,
比如:消息生成者生成一个message(payload是1,routing key为quick.orange.rabbit),两个binding(binding key分别为*.orange. 、 *.*.rabbit);exchange比对消息的routing key和binding key
后,exchange将消息分发给两个queue,两个消费者获得queue的消息;
(3)Fanout exchange: 复制分发路由,原理是不需要routkey,当exchange收到消息后,将消息复制多份转发给与自己绑定的消息队列,
比如:消息生成者生成一个message(payload是1,routing key为苹果),两个binding(binding key分别为苹果、香蕉);exchange将消息分发给两个queue,两个消费者获得queue的消息;
rabbiMQ如何保证消息的可靠性?
(1)Message durability:消息持久化,非持久化消息保存在内存中,持久化消息写入内存同时也写入磁盘;
(2)Message acknowledgment:消息确认机制,可以要求消费者在消费完消息后发送一个回执给RabbitMQ,RabbitMQ收到消息回执(Message acknowledgment)后才将该消息从Queue中移
除。通过ACK。每个Message都要被acknowledged(确认,ACK)。
(3)生产者消息确认机制:AMQP事务机制、生产者消息确认机制(publisher confirm)。
最后, 对比一下zeroMQ、rabbitMQ、kafka主流的消息队列的性能情况:
对比方向 概要
吞吐量 万级 RabbitMQ 的吞吐量要比 十万级甚至是百万级Kafka 低一个数量级。ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。
可用性 都可以实现高可用。RabbitMQ 都是基于主从架构实现高可用性。 kafka 也是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
时效性 RabbitMQ 基于erlang开发,所以并发能力很强,性能极其好,延时很低,达到微秒级。其他两个个都是 ms 级。
功能支持 Kafka 功能较为简单,主要支持简单的MQ功能,在大数据领域实时计算以及日志采集被大规模使用;ZeroMQ能够 实现RabbitMQ不擅长的高级/复杂 的队列
消息丢失 RabbitMQ有ack模型,也有事务模型,保证至少不会丢数据, Kafka 理论上不会丢失,但不排除批量情况下。
开发环境 RabbitMQ需要erlang支持、kafka基于zookeeper管理部署、zeroMQ程序编译调用即可
封装库 基于c++开发,使用RabbitMQ-C,cppKafka,而zeroMQ基于C语言开发,无需封装
大型的PHP应用,通常使用什么应用做消息队列?一、消息队列概述
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题。实现高性能,高可用,可伸缩和最终一致性架构。是大型分布式系统不可缺少的中间件。
目前在生产环境,使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。
二、消息队列应用场景
以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。
2.1异步处理
场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种1.串行的方式;2.并行方式。
(1)串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。(架构KKQ:466097527,欢迎加入)
(2)并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间。
假设三个业务节点每个使用50毫秒钟,不考虑网络等其他开销,则串行方式的时间是150毫秒,并行的时间可能是100毫秒。
因为CPU在单位时间内处理的请求数是一定的,假设CPU1秒内吞吐量是100次。则串行方式1秒内CPU可处理的请求量是7次(1000/150)。并行方式处理的请求量是10次(1000/100)。
小结:如以上案例描述,传统的方式系统的性能(并发量,吞吐量,响应时间)会有瓶颈。如何解决这个问题呢?
引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:
按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。
2.2应用解耦
场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:
传统模式的缺点:
1) 假如库存系统无法访问,则订单减库存将失败,从而导致订单失败;
2) 订单系统与库存系统耦合;
如何解决以上问题呢?引入应用消息队列后的方案,如下图:
订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。
库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作。
假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦。
2.3流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
可以控制活动的人数;
可以缓解短时间内高流量压垮应用;
用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面;
秒杀业务根据消息队列中的请求信息,再做后续处理。
2.4日志处理
日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下:
日志采集客户端,负责日志数据采集,定时写受写入Kafka队列;
Kafka消息队列,负责日志数据的接收,存储和转发;
日志处理应用:订阅并消费kafka队列中的日志数据;
以下是新浪kafka日志处理应用案例:
(1)Kafka:接收用户日志的消息队列。
(2)Logstash:做日志解析,统一成JSON输出给Elasticsearch。
(3)Elasticsearch:实时日志分析服务的核心技术,一个schemaless,实时的数据存储服务,通过index组织数据,兼具强大的搜索和统计功能。
(4)Kibana:基于Elasticsearch的数据可视化组件,超强的数据可视化能力是众多公司选择ELK stack的重要原因。
2.5消息通讯
消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
点对点通讯:
客户端A和客户端B使用同一队列,进行消息通讯。
聊天室通讯:
客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。
以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。
三、消息中间件示例
3.1电商系统
消息队列采用高可用,可持久化的消息中间件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)应用将主干逻辑处理完成后,写入消息队列。消息发送是否成功可以开启消息的确认模式。(消息队列返回消息接收成功状态后,应用再返回,这样保障消息的完整性)
(2)扩展流程(发短信,配送处理)订阅队列消息。采用推或拉的方式获取消息并处理。
(3)消息将应用解耦的同时,带来了数据一致性问题,可以采用最终一致性方式解决。比如主数据写入数据库,扩展应用根据消息队列,并结合数据库方式实现基于消息队列的后续处理。
3.2日志收集系统
分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
Zookeeper注册中心,提出负载均衡和地址查找服务;
日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列;
四、JMS消息服务
讲消息队列就不得不提JMS 。JMS(Java Message Service,Java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。
在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。
4.1消息模型
在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
4.1.1 P2P模式
P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点
每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
接收者在成功接收消息之后需向队列应答成功
如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。(架构KKQ:466097527,欢迎加入)
4.1.2 Pub/sub模式
包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点
每个消息可以有多个消费者
发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息。
为了消费消息,订阅者必须保持运行的状态。
为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。
4.2消息消费
在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。
(1)同步
订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;
(2)异步
订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。
JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。
JNDI在JMS中起到查找和访问发送目标或消息来源的作用。(架构KKQ:466097527,欢迎加入)
4.3JMS编程模型
(1) ConnectionFactory
创建Connection对象的工厂,针对两种不同的jms消息模型,分别有QueueConnectionFactory和TopicConnectionFactory两种。可以通过JNDI来查找ConnectionFactory对象。
(2) Destination
Destination的意思是消息生产者的消息发送目标或者说消息消费者的消息来源。对于消息生产者来说,它的Destination是某个队列(Queue)或某个主题(Topic);对于消息消费者来说,它的Destination也是某个队列或主题(即消息来源)。
所以,Destination实际上就是两种类型的对象:Queue、Topic可以通过JNDI来查找Destination。
(3) Connection
Connection表示在客户端和JMS系统之间建立的链接(对TCP/IP socket的包装)。Connection可以产生一个或多个Session。跟ConnectionFactory一样,Connection也有两种类型:QueueConnection和TopicConnection。
(4) Session
Session是操作消息的接口。可以通过session创建生产者、消费者、消息等。Session提供了事务的功能。当需要使用session发送/接收多个消息时,可以将这些发送/接收动作放到一个事务中。同样,也分QueueSession和TopicSession。
(5) 消息的生产者
消息生产者由Session创建,并用于将消息发送到Destination。同样,消息生产者分两种类型:QueueSender和TopicPublisher。可以调用消息生产者的方法(send或publish方法)发送消息。
(6) 消息消费者
消息消费者由Session创建,用于接收被发送到Destination的消息。两种类型:QueueReceiver和TopicSubscriber。可分别通过session的createReceiver(Queue)或createSubscriber(Topic)来创建。当然,也可以session的creatDurableSubscriber方法来创建持久化的订阅者。
(7) MessageListener
消息监听器。如果注册了消息监听器,一旦消息到达,将自动调用监听器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一种MessageListener。
深入学习JMS对掌握JAVA架构,EJB架构有很好的帮助,消息中间件也是大型分布式系统必须的组件。本次分享主要做全局性介绍,具体的深入需要大家学习,实践,总结,领会。
五、常用消息队列
一般商用的容器,比如WebLogic,JBoss,都支持JMS标准,开发上很方便。但免费的比如Tomcat,Jetty等则需要使用第三方的消息中间件。本部分内容介绍常用的消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他们的特点。
5.1 ActiveMQ
ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管JMS规范出台已经是很久的事情了,但是JMS在当今的J2EE应用中间仍然扮演着特殊的地位。
ActiveMQ特性如下:
⒈ 多种语言和协议编写客户端。语言: Java,C,C++,C#,Ruby,Perl,Python,PHP。应用协议: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 完全支持JMS1.1和J2EE 1.4规范 (持久化,XA消息,事务)
⒊ 对spring的支持,ActiveMQ可以很容易内嵌到使用Spring的系统里面去,而且也支持Spring2.0的特性
⒋ 通过了常见J2EE服务器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的测试,其中通过JCA 1.5 resource adaptors的配置,可以让ActiveMQ可以自动的部署到任何兼容J2EE 1.4 商业服务器上
⒌ 支持多种传送协议:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持通过JDBC和journal提供高速的消息持久化
⒎ 从设计上保证了高性能的集群,客户端-服务器,点对点
⒏ 支持Ajax
⒐ 支持与Axis的整合
⒑ 可以很容易得调用内嵌JMS provider,进行测试
5.2 RabbitMQ
RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。
几个重要概念:
Broker:简单来说就是消息队列服务器实体。
Exchange:消息交换机,它指定消息按什么规则,路由到哪个队列。
Queue:消息队列载体,每个消息都会被投入到一个或多个队列。
Binding:绑定,它的作用就是把exchange和queue按照路由规则绑定起来。
Routing Key:路由关键字,exchange根据这个关键字进行消息投递。
vhost:虚拟主机,一个broker里可以开设多个vhost,用作不同用户的权限分离。
producer:消息生产者,就是投递消息的程序。
consumer:消息消费者,就是接受消息的程序。
channel:消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。
消息队列的使用过程,如下:
(1)客户端连接到消息队列服务器,打开一个channel。
(2)客户端声明一个exchange,并设置相关属性。
(3)客户端声明一个queue,并设置相关属性。
(4)客户端使用routing key,在exchange和queue之间建立好绑定关系。
(5)客户端投递消息到exchange。
exchange接收到消息后,就根据消息的key和已经设置的binding,进行消息路由,将消息投递到一个或多个队列里。
5.3 ZeroMQ
号称史上最快的消息队列,它实际类似于Socket的一系列接口,他跟Socket的区别是:普通的socket是端到端的(1:1的关系),而ZMQ却是可以N:M 的关系,人们对BSD套接字的了解较多的是点对点的连接,点对点连接需要显式地建立连接、销毁连接、选择协议(TCP/UDP)和处理错误等,而ZMQ屏蔽了这些细节,让你的网络编程更为简单。ZMQ用于node与node间的通信,node可以是主机或者是进程。
引用官方的说法: “ZMQ(以下ZeroMQ简称ZMQ)是一个简单好用的传输层,像框架一样的一个socket library,他使得Socket编程更加简单、简洁和性能更高。是一个消息处理队列库,可在多个线程、内核和主机盒之间弹性伸缩。ZMQ的明确目标是“成为标准网络协议栈的一部分,之后进入Linux内核”。现在还未看到它们的成功。但是,它无疑是极具前景的、并且是人们更加需要的“传统”BSD套接字之上的一 层封装。ZMQ让编写高性能网络应用程序极为简单和有趣。”
特点是:
高性能,非持久化;
跨平台:支持Linux、Windows、OS X等。
多语言支持; C、C++、Java、.NET、Python等30多种开发语言。
可单独部署或集成到应用中使用;
可作为Socket通信库使用。
与RabbitMQ相比,ZMQ并不像是一个传统意义上的消息队列服务器,事实上,它也根本不是一个服务器,更像一个底层的网络通讯库,在Socket API之上做了一层封装,将网络通讯、进程通讯和线程通讯抽象为统一的API接口。支持“Request-Reply “,”Publisher-Subscriber“,”Parallel Pipeline”三种基本模型和扩展模型。
ZeroMQ高性能设计要点:
1、无锁的队列模型
对于跨线程间的交互(用户端和session)之间的数据交换通道pipe,采用无锁的队列算法CAS;在pipe两端注册有异步事件,在读或者写消息到pipe的时,会自动触发读写事件。
2、批量处理的算法
对于传统的消息处理,每个消息在发送和接收的时候,都需要系统的调用,这样对于大量的消息,系统的开销比较大,zeroMQ对于批量的消息,进行了适应性的优化,可以批量的接收和发送消息。
3、多核下的线程绑定,无须CPU切换
区别于传统的多线程并发模式,信号量或者临界区, zeroMQ充分利用多核的优势,每个核绑定运行一个工作者线程,避免多线程之间的CPU切换开销。
5.4 Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。
Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。(文件追加的方式写入数据,过期的数据定期删除)
高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
Kafka相关概念
Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker[5]
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Partition
Parition是物理上的概念,每个Topic包含一个或多个Partition.
Producer
负责发布消息到Kafka broker
Consumer
消息消费者,向Kafka broker读取消息的客户端。
Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用。
1
目录:1、负载均衡器技术Nginx和F5的优缺点对比2、浅谈tomcat 、apache、 nginx的区别及优缺点3、nginx能完全卸载吗?负载均衡器技术Nginx和F5的优...